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Interior Schwarzschild Problem and Its Integration

Hanno EsseÂn1
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The interior Schwarzschild metric for a static, spherically symmetric perfect fluid
can be parametrized with two independent functions of the radial coordinate.
These functions are easily expressed in terms of (radial) integrals involving the
fluid energy density and pressure. The pressure is, however, not independent,
but is determined in terms of the density by one of Einstein’ s equations, the
Oppenheimer±Volkov (OV) equation. An approximate integral to the OV equation
is presented which is accurate for slowly varying, realistic, densities, and exact
in the constant-density limit. It makes it possible to find completely integrated
accurate solutions to the interior Schwarzschild metric in terms of the density
only. Some post-Newtonian consequences of the solution are given as well as
the resulting general relativistic pressure for an energy density } r 2 1/2.

1. INTRODUCTION

General relativity as a theory for phenomena in a curved space-time has

been quite accurately tested by now. Our knowledge of the energy-momentum

tensor of matter and of how matter produces gravity is, however, more limited
and can only be indirectly tested. Interior solutions, i.e., solutions inside

matter distributions, can be used as tools to study these problems.

Already Schwarzschild, in 1916, found the exact interior solution to

Einstein’ s equations for the case of a constant density, and later interior

solutions have been much studied because of their relevance to stellar astro-

physics. Constant density is not a realistic approximation for most cases even
if real densities normally vary slowly. In this article a completely integrated

approximate interior solution to the Einstein equations for a static, spherically

symmetric perfect fluid is given. The approximation is accurate for slowly

varying density and becomes exact for a constant density (more trivially it

is also exact in the Newtonian limit).
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Most presentations of the interior solution give an integral solution to

one of the metric components, but the other independent component is only

determined via the solution of the (Tolman±) Oppenheimer±Volkov (1939)
differential equation for the pressure. The main feat of this presentation is

the approximate but accurate analytic solution of this equation for slowly

varying densities. The second metric component is then also expressible

entirely in terms of integrals involving the density.

The interior Schwarzschild solution is usually not treated in elementary

texts [Schutz (1990) is an exception; even Landau and Lifshitz (1975) skim
over it, but there are extensive treatments in the monographs of Weinberg

(1972), Misner et al. (1973), and Wald (1984)]. A very compact treatment

is given in Appendix B of Hawking and Ellis (1973). Sign conventions here

will follow, e.g., Misner et al. (1973).

We start from Einstein’ s equations in the form

R ik 5
8 p k
c2 Jik (1)

where k [ G/c2 and

Jik 5 Tik 2
1

2
gik T (2)

is the source current tensor (EsseÂn, 1987). The perfect-fluid energy-momen-

tum tensor is

Tik 5 ( r c2 1 p) uiuk 1 pgik (3)

and its trace is

T 5 T i
i 5 2 r c2 1 3p (4)

In the next section, for completeness, we derive the explicit equations

for the interior solution using an optimal parameterization of the metric and

optimal linear combinations of the components of Einstein’ s tensor equa-
tion (1).

We then note that one of the equations so obtained is in fact the Oppenhei-

mer±Volkov equation and proceed to integrate it under the assumption of

slowly varying density. The result is used to derive the post-Newtonian

correction to the pressure. We then discuss the nature of the interior solution

and its Newtonian and post-Newtonian limits. Finally, we use the approximate
integral to the Oppenheimer±Volkov (OV) equation to find an analytic esti-

mate of the general relativisitic pressure for a density r } r 2 1/2. In an Appendix

a compact integration algorithm for the OV equation, assuming a given

density, is presented.
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2. THE INTERIOR SCHWARZSCHILD SOLUTION

We parametrize the metric so that the line element is given by

ds2 5 2 e 2 2 k d (r) 1 1 2 2 k
m (r)

r 2 c2 dt2

1 1 1 2 2 k
m (r)

r 2
2 1

dr 2 1 r 2 d V 2 (5)

Here d V 2 5 d u 2 1 sin2 u d w 2 as usual. We thus have

gtt 5 1/gtt 5 2 e 2 2 k d (r) 1 1 2 2 k
m (r)

r 2
grr 5 1/grr 5 1 1 2 2 k

m (r)

r 2
2 1

(6)

g u u 5 1/g u u 5 r 2, g w w 5 1/g w w 5 r 2 sin2 u

for the metric components, the off-diagonal all being zero. This parametriza-
tion has been used before (Visser, 1992, 1996) and seems to be the most

suitable for the problem.

The perfect-fluid energy-momentum tensor is now taken to have

components.

Ttt 5 gtt r c2, Trr 5 grr p , T u u 5 g u u p , T w w 5 g w w p (7)

(see e.g., Schutz, 1990). This means that the source current tensor has

components

Jtt 5 2
1

2
gtt ( r c2 1 3p), Jrr 5

1

2
grr ( r c2 2 p), etc. (8)

We now introduce the notion

R(t) 5 gtt R tt, R(r) 5 grr Rrr , R V 5 g u u R u u 1 g w w R w w (9)

for the products of the contravariant metric components with the correspond-

ing covariant Ricci components. We also put

R (s) 5 R(r) 1 R V (10)

Using this notation, we can now express the curvatuve scalar in the alterna-

tive ways

R 5 gik Rik 5 R(t) 1 R(r) 1 R V 5 R(t) 1 R(s) (11)

In the same way we form
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J(t) 5 gtt Jtt 5 2
1

2
( r c2 1 3p) (12)

J(r) 5 grr Jrr 5
1

2
( r c2 2 p) (13)

J V 5 g u u J u u 1 g w w J w w 5 ( r c2 2 p) (14)

J(s) 5 J(r) 1 J V 5
3

2
( r c2 2 p) (15)

Then J 5 J(t) 1 J(s) 5 2 T 5 r c2 2 3p.
Since the metric, as well as the Ricci tensor and the source current

tensor, are diagonal, there are four different Einstein equations (1). The two

corresponding to the angular variables, however, differ only in a common

factor. This leaves us with three independent equations. The three equations

obtained directly from (1) are, however, not immediately transparent. It turns

out that suitable linear combinations of them simplify the problem
dramatically.

One clue to a suitable linear combination is suggested by intuition.

Since the curvature scalar R 5 R(t) 1 R(s) is the Lagrangian density for the

gravitational field in the Einstein±Hilbert variational approach, experience

from analytical mechanics suggests that changing the sign of one of the two
(time and space) contributions to R should produce a Hamiltonian density.

We also see that, indeed J(s) 2 J(t) 5 2 r c2, so it seems promising. Computer

algebra experiments aided the search for the second suitable combination.

Optimal linear combinations of the tensor component Einstein equations

turn out to be

R (s) 2 R(t) 5 16 p k r (16)

R (r) 2 R(t) 5 8 p k ( r 1 p/c2) (17)

R (r) 1 R(t) 5 16 p k p/c2 (18)

If we now denote differentiaon with respect to r by a prime (df/dr 5 f 8), the

above equations take the explicit form

m8 5 4 p r 2 r (19)

d 8 5 2 4 p r 1 r 1
p

c2 2 1 1 2 2 k
m

r 2
2 1

(20)

[ d 9 2 k ( d 8)2] 1 1 2 2 k
m

r 2 1
d 8

r 1 1 1 k
m

r
2 3 k m8 2 1

m9

r
5 2 8 p

p

c2 (21)
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We will refer to these as the m-equation, the d -equation, and the p-equation,

respectively. Assuming r (r) known, we can immediately integrate the m-

equation and get

m (r) 5 #
r

o

r (s)4 p s2 ds (22)

Also assuming p(r) known, from an equation of state p 5 p ( r ), we can

then also integrate the d -equation directly. In the vacuum outside the body

(r . R) where r 5 p 5 0 one sees that d 5 0 is a consistent solution. We
take the this as boundary condition on d and get

d (r) 5 #
R

r

r (s) 1 1 1
p (s)

r (s)c2 2 1 1 2
2

c2

Gm (s)

s 2
2 1

4 p s ds (23)

We have now found both m (r) and d (r) and thus determined the metric,

provided r (r) and p (r) are known. p can, however, be written in terms of r ,

as we show below.

3. THE OPPENHEIMER± VOLKOV EQUATION

What then is the role of the p-equation (21)? Insertion of the m and d -

equations and the solution for m into this equation leads after straighrforward

calculation to

p8 5 2 G
( r 1 p/c2)(m 1 4 p r3p/c2)

r (r 2 2 k m)
(24)

which is a differential equation for p. This is the so-called Oppenheimer±

Volkov (OV) equation, the general relativistic equation for hydrostatic equilib-

rium (Oppenheimer and Volkov, 1939). It is normally obtained from the
equation of motion T ik

;k 5 0. Here it seen to follow from the Einstein equa-

tions directly.

One notes that, compared to the Newtonian hydrostatic equilibrium

p 80 5 2 G
r m

r 2 (25)

the general relativistic corrections all steepen the pressure gradient. To see

more clearly how the two differ qualitatively, one can rearrange (24) a bit.

If we introduce the mean density r inside radius r,

r (r) 5 m (r)/ (4 p r3/3) (26)

we find the form
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p8 5 p 80 1 1 1
p

r c2 2 1 1 1 3
p

r c2 2 1 1 1 2
p 80r

r c2 2
2 1

(27)

This form shows that all corrections are essentially pressure divided by

energy density.

The above form for the OV equation is easily rewritten

dp

[1 1 p/( r c2)][1 1 3p/( r c2)]
5 p 81(r) dr (28)

where we define

p 81(r) 5 p 80 1 1 1 2
p 80r

r c2 2
2 1

5
2 G r (r)m (r)

r 2 2 2 k rm (r)
(29)

(28) immediately shows that if the density is constant (and therefore the

average density, too) we have separated the differential equation and can

integrate it directly. This fact lies behind Schwarzschild’ s exact constant-

density solution.

Should the density not be constant, one can, of course, proceed and
integrate anyway, as if it were. The error involved must arise from the r-
derivative of the left-hand side. We find (here we must consider p to be an

independed variable) that

d

dr

1

(1 1 p/ r c2) (1 1 3p/ r c2)

5
(1 1 3p/ r c2) ( p/ r c2) d ln r /dr 1 (1 1 p/ r c2) (3p/ r c2) d ln r /dr

(1 1 p/ r c2)2 (1 1 3p/ r c2)2 (30)

This derivative is thus essentially proportional to the product of the relativisti-

cally small p/( r c2) and the derivative of the logarithm of r . If r is slowly

varying, the derivative of the logarithm naturally is very small. In conclusion

the result of direct integration of equation (28) can be expected to be excellent
under most realistic circumstances. It is analogous to phase-integral approxi-

mations common in quantum mechanics.

Integrating (28), we now get

#
p(r)

0

dq

[1 1 q/( r c2)][1 1 3q/( r c2)]
5 #

r

R

p 81(s) ds (31)

The left-hand q-integral can be done, so, defining 31(r) to be the primitive

function of p 81(r), we find



Interior Schwarzschild Problem and Its Integration 881

ln[1 1 p (r)/( r c2)] 2 ln[1 1 3p (r)/( r c2)]

1/( r c2) 2 3/( r c2)
5 31(r) 2 31(R) (32)

This can now be solved for p (r). If we put p1(r) 5 31(r) 2 31(R), we obtain

(0 # R)

p (r) 5 r c2 exp[(1 2 3 r / r ) p1/( r c2)] 2 1

1 2 (3 r / r ) exp[(1 2 3 r / r )p1/( r c2)]
(33)

where

p1(r) 5 #
R

r

G r (s)m (s) ds

s2 2 2 k sm (s)
(34)

Since r (r) and m (r) both are given by r (r), we see that this equation gives

a general relativistic p (r) for an arbitrarily given, not too rapidly varying,
density r . Should the present approximation not be sufficient, a simple algo-

rithm for the full solution is given in the Appendix.

To first order, the solution (33) of the OV equation is

p (r) ’ p1(r) 3 1 1
1

2c2 1 1r 1
3

r 2 p1(r) 1 ¼ 4 (35)

Equation (34) gives, to first order,

p1(r) ’ p0(r) 1 #
R

r

2G2

c2

r m2

s3 ds 1 ¼ (36)

where p0(r) is the Newtonian pressure. Inserting this into (35), we get

p (r) ’ p0(r) 1
1

2c2 1 1r 1
3

r 2 p 2
0 (r) 1 #

R

r

2G2

c2

r m2

s3 ds 1 ¼ (37)

and so find the first-order general relativistic corrections to the Newtonian

pressure.

4. THE NEWTONIAN AND POST-NEWTONIAN LIMITS OF THE
INTERIOR SOLUTION

With the accurate result (33) for the general relativistic pressure p (r)
inserted into the expression (23) for the function d (r) we have finally a

completely integrated solution to the interior Schwarzschild metric in terms

of an (an arbitrary) r (r) only. Using these formulas; one can generate accurate
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general relativistic solutions (other than the constant-density one). One will

be presented in the next section.

Let us first, however, have a look at the meaning of the function d (r)
in the metric. In order to do this, it is useful to note that one can find the

Newtonian potential f from the metric through the identifiction

gtt(r) 5 2 (1 1
2

c 2 f (r)) (38)

Outside (r . R) the body this is exact, both as a Newtonian and as a

Schwarzschild result, since there one has f (r) 5 2 Gm (R)/r in both cases.

Inside the body (0 # r , R) things are more complex. In the Newtonian

theory the potential at r can be thought of as having two parts inside a
spherical body. One part, f , , from the matter inside the radius r, is given by

f , (r) 5 2 G
m (r)

r
5 2 G

1

r #
r

0

r (s)4 p s2 ds (39)

The other part, f . , comes from the matter outside r and is given by

f . (r) 5 2 G d 0(r) 5 2 G #
R

r

r (s)4 p s ds (40)

and the full Newtonian potential is f 0 5 f , 1 f . .
If we now consider equation (23) for the function d (r), we see that in

the Newtonian limit it gives d 0 as given by (40). In this limit we can also

approximate the exponential in the metric component gtt of equation (6),

and thus find that, in the Newtonian limit, the Schwarzschild solution can

be written

gtt(r) 5 2 (1 1
2

c2 f 0(r)) (41)

grr(r) 5 (1 1
2

c2 f , (r)) 2 1 (42)

Outside the body f , 5 f 0 5 f , so the difference vanishes and both expres-
sions are exact; inside, only grr is exact. In spite of the many treatments of

the interior Schwarzschild solution in the literature, this simple fact is rarely,

if ever, mentioned.

The Newtonian acceleration g0(r) at r is given by

g0(r) 5 f 8
0(r) 5 G

m (r)

r 2 (43)

and depends only on the mass inside r. The role of the f . part of the potential
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is thus essentially to cancel the 2 Gm8/r contribution coming from f 8
, . It is

interesting to note that in formula (41) all approximation comes from the f .

part of f , i.e., it should really be in an exponential and should really have
general relativistic contributions from pressure and nonconstant metric.

Deeper reasons why the exterior solution does not depend on the pressure

have been given by Deser and Laurent (1968).

Comparing (38) and (6), we can, using our expressions for m and d
found above, calculate the first-order general relativistic correction to f . This

correction has calculated before (Chandrasekhar 1965), but usually by more
complicated methods. One finds

f ’ f 0 1 f 1

5 f 0 2 1 Gc 2
2

3 # R

r 1 p0

G
1 2

r m

s 2 4 p s ds 2 2 1 d 0m

r
1

1

2
d 2

0 2 4 (44)

where f 0 5 2 G [(m/r) 1 d 0]. The correction f 1 is seen to become zero at

the surface r 5 R. A simple calculation shows that this also is true for the
first-order correction to the acceleration g1(R) 5 (d f 1/dr)r 5 R 5 0. The

gravity gradient, i.e., the derivative of g1 is, however, nonzero. One finds

1 dg1

dr 2 r 5 R

5 1 d
2 f 1

dr 2 2 r 5 R

5 1 Gc 2
2

4 p r (R)

R
m (R) (45)

Since g80 (R) 5 2 (2g0/R) 1 4 p G r , one thus finds that the gravity gradient,

with first-order general relativistic correction is

1 dg

dr 2 r 5 R

’ 2
2g (R)

R
1 4 p G 1 1 1

G

c2

m (R)

R 2 r (R) (46)

at the surface of a body. For the earth GM/(c2R) ’ 10 2 9, so this change in

apparent G value is presently completely beyond experimental detection (in

good agreement with conventional wisdom).

5. AN APPROXIMATE ANALYTIC INTERIOR GENERAL
RELATIVISTIC PRESSURE

An approximate but accurate solution for the pressure and the metric,

given a slowly varying r , is, according to the results above, calculated as

follows.

1. Given r , calculate m according to equation (22). This also gives the

average density r according to (26).
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2. Using r and m, calculate p1, of equation (34).

3. Using p1, r , and r , find the general relativistic pressure p according

to (33).
4. Finally, find the function d using r , p, and m in equation (23).

With this scheme in mind one might try to find a density that gives analytic,
closed-form, expressions for as many interesting quantities as possible. The

case of a constant density was done already by Schwarzschild. A more

interesting exact interior solution has been found by Buchdahl (1981). Below

I will present a solution that is not exact, but which gives an accurate analytic

result for the general relativisitic pressure p (except near the origin).

Simple considerations lead one to suspect that a simple Newtonian
pressure p0 is a good starting point. We thus try the density

r (r) 5 H ar 2 1/2 for 0 # r # R

0 for R , r
(47)

If we introduce h 5 G8 p a/(c25) and the dimensionless variable x through
x 5 h 2/3r, this gives

r (r) 5 a h 1/3x 2 1/2 (48)

m(r) 5 k 2 1 h 2 2/3x5/2 (49)

r (r) 5 (6/5) r 5 (6/5)a h 1/3 x 2 1/2 (50)

p80 (r) 5 2 c2a h (51)

p0(r) 5 c2a h 1/3 (X 2 x) (52)

where X 5 h 2/3 R represents the surface. We now introduce the function

f (x) 5 #
x

0

ds

1 2 s3/2 (53)

since it can be used to express p1 as follows:

p1(r) 5 c2a h 1/3[ f (X) 2 f (x)] (54)

Series expansion and term by term integration of f gives the fairly simple result

f (x) 5 2x S
`

k 5 0

( ! x)3k

2 1 3k
(55)

Maple (see, e.g., Nicolaides and Walkington, 1996) gives the somewhat longer

analytic expression
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f (x) 5
1

3 H 2 arctanh( ! x) 2 ln (1 2 x) 2
p ! 3

6

1
1

2 3 ln (1 1 x 1 x2) 1 ln 1 1 1 ! x 1 x

1 2 ! x 1 x 2 G (56)

1 ! 3 F arctan 1 2

! 3
x 1

1

! 3 2 2 arctan 1 2

! 3
! x 2

1

! 3 2
2 arctan 1 2

! 3
! x 1

1

! 3 2 G J
For small (nonrelativisitic) x values the series should suffice, but since we

are interested in general relativistic effects here we need good results for x
near unity. The analytic expression should then be useful.

We now put our results into formula (33) and get the general relativistic

pressure in the form

p (r) 5 c2 a h 2 1/3 P X (x) (57)

where

P X (x) 5
1

! x

exp{(3/2 ! x[ f (x) 2 f (X)]} 2 1

1 2 (5/2) exp{(3/2) ! x[ f (x) 2 f (X )]}
(58)

One notes that

lim
x ® 0

P x (x) 5 f (X) (59)

but near the origin x 2 1/2 is not slowly varying and thus the solution cannot

be trusted as an accurate general relativistic solution in that limit.

The function P X (x) is plotted for four different values of X in Figs.

1±4 (the normalized variable x/X is on the horizontal axis). The lowest curve

in each diagram is the Newtonian pressure ( p0 } X 2 x). The middle curve
is the pressure p1 of equation (54). One notes that the pressure p develops

an unphyiscal hump and thus has positive derivative near the origin. This is

due to the fact that the density is not slowly varying near the origin. At X
’ 0.8388 a singularity develops in p.

6. CONCLUSIONS

The solution to the Schwarzschild interior metric given in this paper

differs from those found in the literature only in minor variations. It seems,

however, pedagogically appealing and the natural connection with the New-
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Fig. 1. The Newtonian pressure p0 } X 2 x (bottom curve), the pressure p1 } f (X) 2 f (x)

(middle curve), and the approximate general relativistic pressure p } P X(x) (top curve). The

value of X is 0.1 The horizontal axis is the normalized x/X.

Fig. 2. Same as Fig. 1, but for X 5 0.3.
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Fig. 3. Same as Fig. 1, but for X 5 0.5. The unphysical hump in the pressure p is due

to the rapid variation of the density near the origin.

Fig. 4. Same as Fig. 1, but for X 5 0.8. The pressure p is becoming very unphysical in

the interior. At X ’ 0.8388 a singularity develops in p.
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tonian result for the interior that I have stressed above seems to have some

novelty. It is perhaps noteworthy that the OV equation is simply one of

Einstein’ s equations in my formalism. The divergencelessness of the Einstein
tensor which gives T ik

;k 5 0, which is normally used to get the OV equation,

requires after all an extra covariant differentiation.

The approximate solution of the OV equation that is exact in the constant-

density as well as the nonrelativistic limit should be useful for qualitative

studies. The explicit inverse square root density investigated in the last section

does not really do justice to the approximate solution to the OV equation
since this density definitely violates the assumption of slowly varying density

near the origin. It was, however, the only reasonably physical density that

readily gave analytic closed-form expressions. The singularity in the pressure

when the Schwarzschild radius is approached is, however, a feature that it

has in common with the constant-density solution and exact solutions, even

if it does not come at the origin in my approximation.

APPENDIX. ALGORITHM INTEGRATING THE OV EQUATION
FOR A GIVEN DENSITY

The integration of the OV equation (24) is usually treated in the literature

in connection with stellar modeling. One then assumes an equation of state
p 5 p ( r ) and integrates three coupled equations to get both p and r . This is

clearly described in §23.7 of Misner et al. (1973).

If one is interested only in finding the pressure given a density, a very

elegant algorithm can be found. Equation (27); using (29), gives

p8 5 p 81 1 1 1
p

r c2 2 1 1 1
3p

r c2 2 (A1)

We do not know p, so we cannot integrate, but we can get p1 [see equation

(34)] and find an approximation to p by integrating

p 82 5 p 81 1 1 1
p1

r c2 2 1 1 1
3p1

r c2 2 (A2)

to

p2(r) 5 #
R

r

p 81 1 1 1
p1

r c2 2 1 1 1
3p1

r c2 2 ds (A3)

This leads to the iteration formula
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pk 1 1(r) 5 #
R

r

p 81 1 1 1
pk

r c2 2 1 1 1
3pk

r c2 2 ds (A4)

where p1, defined in terms of p0 in equation (34), is the starting approximation.
Assuming convergence, the procedure leads to a self-consistent general rela-

tivistic pressure p (r) 5 limk ® ` pk(r).
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